Vascular Disruption and Antiangiogenesis

Dietmar W. Siemann, Ph.D.
University of Florida
Why Do Cancer Therapies Fail?

- Both *local recurrences* and *distant metastases* are significantly affected by tumor progression and tumor pathophysiology.
- These factors are critically impacted by the *initiation* and *maintenance/expansion* of a *tumor blood vessel network*.
Vascular Disruption and Antiangiogenesis

Initiation

Maintenance and Expansion

Small tumor

Chemical signal

Blood vessel

Growing capillaries

Nutrients from blood

Metastatic spread
Vascular Disruption and Antiangiogenesis

Hypoxia and acidity are inducers of angiogenic signaling

- Endostatin
- Angiostatin
- Interferons
- Others

- VEGF
- PDGF
- FGF
- IL-8
- Others

Balance
Vascular Disruption and Antiangiogenesis

- Endostatin
- Angiostatin
- Interferons
- Others VEGF
- PDGF
- FGF
- IL-8
- Others proangiogenic factors outweigh antiangiogenic factors

Initiation

- VEGF is considered the most powerful proangiogenic factor in tumors
- Associated with tumor growth rate, vessel density, metastases

New vessel development
Vascular Disruption and Antiangiogenesis

Inhibition of VEGF signaling

- **Anti-VEGF antibodies** (Bevacizumab)
- **VEGF-A**, **VEGF-C**, **VEGF-D**
- **Extracellular environment**
- **Intracellular environment**
- **VEGFR-2**
- **Tyrosine kinase inhibitors** (Sorafenib, Vandetanib, Cediranib, Brivanib)
• Inhibitors of VEGF-associated signaling demonstrate antitumor efficacy in a wide variety of rodent tumor models and human tumor xenografts including renal, colorectal, KS, and sarcoma.
Vascular Disruption and Antiangiogenesis

- But – anti-angiogenic therapy efficacy in solid tumors has been modest – and – such therapies are unlikely to eliminate the entire tumor cell population on their own.

Hurvitz et al, 2004

- 811 untreated metastatic colorectal cancer patients
- Randomized to IFL +/- bevacizumab
- Primary endpoint = overall survival
- Secondary endpoint = progression free survival, response rate
Vascular Disruption and Antiangiogenesis

- **Target the angiogenesis process**
- **Target the existing vessel network**

- **Biologic based**
- **Small molecule drugs**
 - short-lived tubulin depolymerizing agents
Vascular Disrupting Agents

elicit a tumor cell death cascade due to prolonged ischemia

Shape change and detachment

VE-cadherin disengagement

Tumor neovasculature

Damage to established vessel

Vessel occlusion and tumor necrosis
Vascular Disruption and Antiangiogenesis

VDA Treatment Efficacy

- Vascular disrupting agents effectively eliminate large areas of solid tumors.
- Particularly areas typically resistant to conventional anti-cancer therapies.
Vascular Disruption and Antiangiogenesis

• But – cells surviving at the tumor periphery aggressively promote neovascularization – and – such therapies are unlikely to eliminate the entire tumor cell population on their own.
Combining Vessel Directed Strategies

- VDAs effectively eliminate large areas of tumors
- Cells surviving VDA treatment aggressively promote neovascularization
- VDAs plus AIs provide more effective tumor therapy than either treatment alone

Siemann and Shi, *IJROBP*, 2004
Vascular Disruption and Antiangiogenesis

The image shows a graph titled "Vascular Disruption and Antiangiogenesis." The x-axis represents different treatments: Control, Bevacizumab, CA4P, OXi4503, Bev + CA4P, and Bev + OXi4503. The y-axis represents time to 5x initial size (days).

The graph displays box plots for each treatment group, indicating a range of values and central tendency. The treatments are compared based on their effectiveness in delaying the time to achieve a 5x increase in size. The data suggests that the combination treatments (Bev + CA4P and Bev + OXi4503) show a longer time to 5x initial size compared to the single-agent treatments and the control group.
Conclusion

- Therapeutic strategies relying on single biologic agent targeting approaches may be beneficial but their ultimate impact on treatment efficacy is likely to be limited.
- AIs and VDAs can modify conventional anti-cancer therapy – but better cytotoxics are needed.
- The application of combined Biologic Targeting Strategies needs to be considered.
Vascular Disruption and Antiangiogenesis

Single Pathway

- Multiple intervention points

- Combinations targeting
 - Ligand
 - Receptor
 - TK signal
 - Message

- Immune effector cell
- Bispecific Abs
- Anti-ligand mAbs
- Ligand/toxin conjugate
- Anti-receptor mAbs
- TK signal
- Nucleus
- Antisense
Single Pathway Targeting Concerns

- The complexity of neovascularization pathways implies that disrupting only a single aspect of angiogenesis probably will not suffice.

- Multiple RTKs are co-activated in tumors and redundant inputs drive and maintain downstream signaling, thereby limiting the efficacy of therapies targeting single RTKs.
Multiple Pathway Targeting

- Possible Strategies
 - Single molecule affecting several pathways
 - Sunitinib (PDGF, VEGF, other RTKs)
 - Sorafenib (Raf, PDGF, VEGF, cKit)
 - Vandetanib (VEGF, EGF)
 - Individual agents for individual pathways
Targeting Functionally Related Pathways

- **Progression**
 - Proliferation (EGF – Cetuximab, TKIs; mTOR – RAD001, Temsirolimus)
 - Vasculature (VDAs, AIs)

- **Metastases**
 - Angiogenesis (VEGF – various TKI ‘nibs’)
 - Invasion (Src – AZD0530, Dasatinib)
• Combining strategies that target angiogenesis and cell invasion may inhibit metastases formation.
Conclusions

• Future therapeutic strategies should seek to develop “combination biologic therapy” targeting multiple intervention points and/or functionally related pathways.

• And – to apply such combinations of biologic agents in conjunction with conventional anticancer treatments.