Recent and Future Developments in Breast Cancer Imaging

Martin J. Yaffe, PhD
Senior Scientist, Imaging Research Program, Tory Family Chair in Cancer Research
Sunnybrook Health Sciences Centre
University of Toronto

8th PMH Conference – October 16 2008
Prof Harold E. Johns, OC
What HEJ taught us

• If you have an idea, question it, pull it apart, look at it from all sides until you’re sure it’s right
 – “Mene, mene, tekel, upharsin” – Writing on the wall
 Daniel: 5
 (“judged in the balance and found wanting”)

• Once you believe in it, pursue it with vigour and make it happen
 – In that quest, don’t tolerate, mediocrity, procrastination or red tape
How do you reduce mortality and suffering from cancer?

- Prevention – must understand causes
- Earlier detection – find the cancer at a point when therapy can be effective
- Better treatments – tailor the treatment to the individual and the cancer

Imaging can have an important impact in all of these areas
Improvements in breast cancer imaging
Mammogram, circa 1978

- “Fuzzy”
- Poor contrast
- High radiation dose
Improvements in Mammography

• Working with Dr Johns, Ken Taylor and industry, we made some evolutionary developments to improve mammography
 – Sharper images, reduced dose
• Stimulated introduction of Ontario legislation to mandate standards for medical imaging – qualifications and quality control
Where we are today - Effect of screening mammography

Stage distribution of breast cancers in screened vs un-screened British Columbia women aged 40-49

<table>
<thead>
<tr>
<th>STAGE</th>
<th>SCREENED (%)</th>
<th>UNSCREENED (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>62</td>
<td>39</td>
</tr>
<tr>
<td>II</td>
<td>30</td>
<td>46</td>
</tr>
<tr>
<td>III</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>IV</td>
<td>0.3</td>
<td>7</td>
</tr>
</tbody>
</table>

Mortality reduction demonstrated in BC of screened vs unscreened women - 25% (Coldman et al)
Accuracy of mammography is limited in the dense breast
Could the use of electronic x-ray detectors and computer processing improve mammography – i.e. digital mammography?

• Capitalize on technological advances arising from:
 – Space and military research (microelectronics, precision motors, fast computers, image processing)
 – Home entertainment (CCDs, high resolution flat-screen displays)
Digital Mammography

• 1985 – 1990 preliminary science and technology at PMH (supported by Canadian grants)

Bob Nishikawa
Andrew Maidment
Rebecca Fahrig
Digital Mammography

- 2000 Funding of $26.5 M US to conduct full clinical assessment – The DMIST Study.

- Requires signing of a special bill by Bill Clinton.

- 2001-2005 Recruiting of 50,000 women (3100 in Toronto), imaging and data analysis. (911 / SARS)
Digital Mammography: More accurate acquisition, image processing, reduced radiation dose
DMIST Study - Digital vs Film Mammography

- 50,000 women in US and Canada
 - Received both exams
- 2005 - Publication of positive results:
- Compared to film mammography, digital mammography finds substantially more cancers in
 - women with dense breasts
 - women under the age of 50
- 2008 - 38% of mammography in US is now digital; 80% by 2012.
Breast MRI for High-Risk Women

• There is a group of women (many positive for breast cancer gene mutations) who are at high risk for breast cancer (80% lifetime risk) and for whom mammography does not work well.

• These women tend to develop these cancers earlier in life.

• Lacking an accurate screening method, many of these women opt for prophylactic mastectomy.

• Plewes, Warner, Causer and colleagues at Sunnybrook developed breast MRI techniques.
Magnetic resonance imaging

1 cm

0.5 cm

Courtesy of Dr. E. Ramsay
Warner, Plewes et al. Sensitivity for breast cancer detection in high risk women

Sensitivity by Modality (n=19)
Conventional mammogram
Cancer not seen on Conventional Mammography
The Future
(could be closer than we think)
• Up to now, we have mainly been detecting cancer on the basis of changes in structure – feeling lumps, seeing masses on an x-ray image.

• Develop cancer imaging techniques that are specifically targeted to changes in function or molecular characteristics associated with cancer - biomarkers
Ontario Institute for Cancer Research

- “The 1 mm Cancer Imaging Challenge” – Program in Earlier Detection and Diagnosis
- Support for new personnel, infrastructure and operation ~ $35M 2007-2010

Tom Hudson, President OICR
Biomarker

- Something that provides information about the disease state
 - Disease is present or not
 - Level of aggressiveness
 - Responsiveness to a particular treatment
- Biomarker can be
 - a molecule on the surface of a cancer cell
 - a change in temperature or acidity, etc.
Imaging Angiogenesis

- Tumour induces angiogenesis
- Resulting vessels are of poor quality & leaky
- These vessels are a biomarker for cancer

Vascularized tumour penetrated by capillaries

Melissa Hill
Dual Energy CEDM

Screening Mammography
• Potential architectural distortion on right breast (CC view)

• Physical examination normal

Courtesy: Dr Clarice Dromain, Institut Gustave Roussy – Villejuif, France, GE Healthcare, Buc, France
Improved Pathology To Validate New Imaging Techniques

Gina Clarke
Chris Peressotti

Greg Czarnota
Claire Holloway
Eg Diffuse Optical Tomography - LABC

SoftScan® image acquired 5 days before surgery

Wholemount section with highlighted inset
Tumour Stem Cells

CD-24 (Negative Staining) CD-44 (Positive Staining)
OICR Earlier Detection and Diagnosis Program (1mmCC)

- Molecular Imaging – Identify the fingerprints of breast cancer
 - Create new probes for targeted imaging
Cancer Imaging with Ultrasound probes
Peter Burns

- US (targeted microbubble, nanodroplets)

- Targeted microbubbles, nanodroplets

Naomi Matsuura
Rajiv Chopra
Quantitative Classification

Case-Control Studies

Boyd (1982)
Brisson (1982)
Brisson (1984)
Brisson (1989)
Maskarinec (2000)
Thomas (2002)
Ursin (2003)
Van Gils (1998)
Van Gils (1999)
Van Gils (2000)
Wolfe (1986)

Case-Control Summary

Cohort Studies

Boyd (2003)
Boyd-computer (1995)
Boyd-radiologist (1995)
Byrne (2001)
Byrne (1995)
Saftlas (1991)

Cohort Summary

All Studies Summary

Risk Estimate

1 5 10
Volumetric Density From Film Mammography

kVp 26, mAs 59.6, thickness 3.6 cm, VBD=34%
The Promise of Imaging

• Detect the cancers that will progress and kill
 – earlier, more accurately
• Provide individualized treatment based on characteristics of the cancer
• Identify and validate biomarkers that can be used for cancer screening
• Practical imaging “probes” that provide molecular and functional information