Progress in Mesothelioma

Princess Margaret Hospital

Michael R. Johnston, MD, FRCSC
Professor of Surgery, Dalhousie University
Adjunct Professor of Surgery, University of Toronto
Affiliate Scientist, Ontario Cancer Institute
Mesothelioma Research Program

• Early Detection Study
 – LDCT scan, questionnaire, biomarkers, spirometry

• Treatment Protocols
 – Trimodality therapy
 – Neo-adjuvant IMRT
 – Advanced disease chemo studies

• Basic Research Studies
 – Genetic profiling of tumours
 – Immunomodulation in mesothelioma
 – Screening new therapies

• Epidemiology Studies
 – Asbestos related lung disease

Princess Margaret Hospital
Mesothelioma Research Program

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael R. Johnston, MD</td>
<td>Thoracic Surgeon</td>
</tr>
<tr>
<td>Heidi Roberts, MD</td>
<td>Radiologist</td>
</tr>
<tr>
<td>Marc de Perrot, MD</td>
<td>Thoracic Surgeon</td>
</tr>
<tr>
<td>Ming Tsao, MD</td>
<td>Pathologist</td>
</tr>
<tr>
<td>Ron Feld, MD</td>
<td>Medical Oncologist</td>
</tr>
<tr>
<td>Brenda O’Sullivan</td>
<td>Coordinator</td>
</tr>
<tr>
<td>Li Zhang, PhD</td>
<td>Immunologist</td>
</tr>
<tr>
<td>Masaki Anraku, MD</td>
<td>Thoracic Oncology Fellow</td>
</tr>
<tr>
<td>John Cho, MD</td>
<td>Radiation Oncologist</td>
</tr>
<tr>
<td>Geofrey Liu, MD, PhD</td>
<td>Molecular Epidemiologist</td>
</tr>
<tr>
<td>Martin Tammamagi, PhD</td>
<td>Epidemiologist</td>
</tr>
<tr>
<td>Demetris Patsios, MD</td>
<td>Radiologist</td>
</tr>
<tr>
<td>Gregory Pond</td>
<td>Statistician</td>
</tr>
<tr>
<td>Albert Ebidia</td>
<td>Database support</td>
</tr>
</tbody>
</table>

Princess Margaret Hospital
Survival by Stage in Adjuvant Trials

Brigham (Sugarbaker)
EPP+chemo+rads+chemo

Memorial (Rusch)
EPP+rads

Princess Margaret Hospital
“Early” Mesothelioma

21 year old student

Princess Margaret Hospital
First Sites of Relapse after EPP and 54 Gy Rad Tx

<table>
<thead>
<tr>
<th>Site</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locoregional only</td>
<td>2</td>
</tr>
<tr>
<td>Distant only</td>
<td>30</td>
</tr>
<tr>
<td>Locoregional and distant</td>
<td>5</td>
</tr>
<tr>
<td>Locoregional</td>
<td>7</td>
</tr>
<tr>
<td>Pleural</td>
<td>3</td>
</tr>
<tr>
<td>Nodal</td>
<td>4</td>
</tr>
<tr>
<td>Distant</td>
<td>30</td>
</tr>
<tr>
<td>Peritoneal</td>
<td>17</td>
</tr>
<tr>
<td>Intralateral visceral</td>
<td>5</td>
</tr>
<tr>
<td>Contralateral pleural</td>
<td>13</td>
</tr>
<tr>
<td>Contralateral lung</td>
<td>8</td>
</tr>
<tr>
<td>Bone</td>
<td>7</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
</tr>
</tbody>
</table>

Some patients had more than one site of recurrent disease at relapse.

Treatment Protocol

Malignant pleural Mesothelioma

- pathology review
- pleurodesis

- staging
- Cisplatin based chemotherapy
- re-stage
- Extrapleural pneumonectomy
- Hemithoracic radiation
Chemotherapy Toxicities (N=19)

- No compl.: 14 patients
- Nausea: 2 patients
- Paresth.: 2 patients
- Fever: 2 patients
- PE: 2 patients

Princess Margaret Hospital
Extrapleural Pneumonectomy

Princess Margaret Hospital
Major Post-operative Complications

57 consecutive patients undergoing EPP

- Deaths
- Technical*
- Esophageal perf
- BPF/Empyema
- ARDS/pneumonia
- Pulm emboli
- Cardiac arrest
- Atrial Fib

Total Complications

% of patients
Risk Factors for Major Complications

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right sided EPP</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>RBC transf >4 units</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Age (≥ 60 yo)</td>
<td>0.06</td>
<td>0.1</td>
</tr>
<tr>
<td>Induction chemo</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

* p-value

Princess Margaret Hospital
Impact of Induction Chemotherapy

- Preop Hb (g/l)
- Blood transf. (units)
- Hosp stay (days)

Legend:
- No induction therapy
- Induction chemotherapy

Princess Margaret Hospital
Hemi-thoracic Radiation

Princess Margaret Hospital
Hemithoracic Radiation (N=12)

Grade 1: Skin erythema, Nausea, Esophagitis
Grade 2: Fatigue, Nausea
Grade 3: Vertigo

Princess Margaret Hospital
Toronto Trimodality Therapy Update

- 2001 - December, 2007: 60 patients
 - Induction chemotherapy: 50
 - Cisplatin + vinorelbine 26; pemetrexed 24; other 10
 - No resection: 15
 - Progressive disease: 4
 - Unresectable: 6
 - Positive mediastinoscopy: 5
 - EPP: 45
 - Operative mortality: 3 (7%)
 - Adjuvant hemi-thoracic radiation: 30
 - 3-D conformal (54 Gy in 30 fractions)
 - IMRT (50 Gy in 25 fractions)

dePerrot, JCO; in press

Princess Margaret Hospital
Complications of Trimodality Therapy

Table 2. Severe adverse events recorded during the tri-modality therapy*

<table>
<thead>
<tr>
<th>Complications</th>
<th>Chemotherapy</th>
<th></th>
<th>Surgery</th>
<th></th>
<th>Radiation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 3</td>
<td>Grade 4</td>
<td>Grade 5</td>
<td>Grade 3</td>
<td>Grade 4</td>
<td>Grade 5</td>
</tr>
<tr>
<td>Pulmonary emboli</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukopenia</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac herniation</td>
<td>10</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac arrhythmia</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchopleural fistula</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophageal perforation</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric herniation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chyllothorax</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Severe adverse events defined by grade 3 to 5 toxicity according to the NCI CTCAE version 3.0 guidelines.
Overall Survival

60 patients; median survival 14 months

dePerrot, JCO; in press
Survival According to Nodal Status and Therapy

dePerrot, JCO; in press
Disease-free Survival in Patients Who Completed Trimodality Therapy

N = 30
Toronto Trimodality Therapy

• Median survival
 – Epithelial vs biphasic: 18 vs. 12 mo (p=0.002)
 – N 0 disease
 • Completed trimodality therapy vs incomplete
 • 59 vs. 8 mo (p=0.0001)
 – Chemo regimen: ns

• 5 year disease-free survival
 – 53% in all N0 patients
 • 75% in T1-2
 • 45% in T3-4
Recurrance Following Trimodality Therapy

• Recurrences
 – 16/30 patients
 • Ipsilateral chest: 4 \textit{local}
 • Pericardium: 1
 • Peritoneum: 5 \textit{surgical seeding}
 • Contralateral chest: 4 \textit{vs distant mets?}
 • Chest and peritoneum: 2
Tumour Seeding
Neo-adjuvant IMRT for Mesothelioma

Cho, dePerrot, Feld

• Phase 2 study in 25 patients with cT1-2 N0
 – Resectable patients only
• 25 Gy in 5 fractions over 1 week
 – 5 Gy boost to gross disease
• EPP 1 week following XRT
• Pathologic node negative > no treatment
• Pathologic node positive > adjuvant chemo

Princess Margaret Hospital
Low-dose Computed Tomography For The Early Diagnosis Of Mesothelioma And Lung Cancer In Prior Asbestos Workers: Preliminary Results

Michael R. Johnston, MD, FRCSC
Heidi Roberts, MD

University of Toronto University Health Network
Toronto, Ontario, Canada
Methods

• Early detection study in a population at risk for pleural mesothelioma
 – Prevalence and incidence

• Inclusion criteria
 – History of asbestos exposure at least 20 years ago
 – Asbestos exposure with pleural plaques on chest x-ray
Methods: follow up flow chart

Baseline low-dose CT

- No or inconspicuous plaques or no or non-specific nodules
 - Annual repeat
 - No change
 - Bi-annual repeat
 - Growth
 - Annual repeat
 - Biopsy etc.
 - Resolved (mucous)
 - Annual repeat
 - Bronchoscopy

- Indeterminate nodules (≥5 mm solid or ≥8 mm non-solid)
 - 6 months f/u
 - No change
 - Annual repeat
- Suspicious plaques or nodules
 - 3 months f/u
 - No change
 - Annual repeat
 - Growth
 - Biopsy etc.
 - Stable
 - Annual repeat

- Endobronchial nodules
 - Immediate biopsy
 - Lobulated, asymmetric, effusion
 - Mass-like plaques with effusion

- Suspicious nodules (≥15 mm)
 - Immediate biopsy
Update on Early Detection Study (9/08)

- 751 participants (98% male; average age 61)
 - 84% with lung nodule (20% > 4mm; 1% GGO)
 - 62% with pleural plaques
 - 2% with pleural effusion
- 14 cancers found
 - 6 meso (3 pleural, 3 peritoneal)
 - 8 lung cancers
- Mesothelin and osteopontin assays are in progress
- Expanding endpoints to include asbestos related lung disease

Princess Margaret Hospital
Plasma markers in patients with MPM

Prospective evaluation in patients with MPM (38) and asbestos exposed matched controls (64)

Anraku, IMIG; 2008