Immunotherapy in Lung Cancer
- TLR9 as a therapeutic target -

Wilfried Eberhardt, MD

Head of Outpatient Unit,
Dept. of Internal Medicine (Cancer Research)
West German Cancer Centre Essen
University Hospital Essen
Hufelandstrasse 55, 45147 Essen
wilfried.eberhardt@uni-essen.de
The immune system uses different defenses against extra-and intracellular infections. Defenses against intracellular infections (NK cells, killer T cells) kill infected cells. These defenses can be redirected to kill tumor cells.
Toll-Like Receptors (TLRs) recognize pathogen-expressed molecules such as:

- Bacterial lipopeptides
- GPI-anchored proteins (parasites)
- Lipoteichoic acid (gram + bacteria)
- Zymosan (fungi)
- LPS (gram - bacteria)
- Flagellin (motile bacteria)
- dsRNA (viruses)
- ssRNA (viruses)
- CpG DNA (bacterial and viral DNA)
Some TLRs Are on the Cell Surface, to Detect Extracellular Pathogens

- Bacterial lipopeptides
- GPI-anchored proteins (parasites)
- Lipoteichoic acid (gram + bacteria)
- Zymosan (fungi)
- LPS (gram - bacteria)
- Flagellin (motile bacteria)

Endosome

- dsRNA (viruses)
- ssRNA (viruses)
- CpG DNA (bacterial and viral DNA)
Some TLRs Are Inside the Cell, to Detect Intracellular Pathogens

- Bacterial lipopeptides
- GPI-anchored proteins (parasites)
- Lipoteichoic acid (gram + bacteria)
- Zymosan (fungi)
- LPS (gram - bacteria)
- Flagellin (motile bacteria)
- dsRNA (viruses)
- ssRNA (viruses)
- CpG DNA (bacterial and viral DNA)

TLR9 detects unmethylated CpG – common in pathogens, rare in vertebrate DNA.
Immune Effects of Stimulating TLR9

Rapid Induction of Innate Immune Response

- **B Cell**
 - IFN-α's, IFN-β's
 - IP-10, other chemokines
 - IL-10, IL-6, costimulatory factors

- **Plasmacytoid Dendritic Cell**
 - IFN-γ, TRAIL
 - IFN-α's, IFN-β's
 - IP-10, other chemokines

- **NK Cell, Monocyte, PMN**

- **TLR9**
 - PF-3512676

- **Hours**
How Could TLR9 Activation Work in Treating Cancer?

- Activation of anti-tumor Th1-like innate immune responses
 - IFN, chemokines and cytokines
 - Cell based; NK cells, monocytes/macrophages
- Activation of tumor-specific Th1 adaptive immunity
 - CpG activates pDC, mDC in tumor and DLN
 - Mature pDC and mDC present tumor antigens; induce tumor-specific killer T cells

In Vivo Activation of Dendritic Cells
Switching on Anti-Tumor Immunity by in vivo DC Activation Through TLR9

Antigens + PF-676

Immature dendritic cells

Tumor-specific, effector CTLs

Costimulatory Molecules, Th1-like milieu

T cell Tolerance
CpG TLR9 Agonist Monotherapy Induces Tumor Rejection

- 5mm s.c. cervical carcinoma in flank
- Daily CpG nuchal area injections d. 10 to 19
- 60% of mice had complete regression

CpG TLR9 Agonist Monotherapy Works Through Tumor-Specific Killer T Cells (CTLs)

Protective Memory: 100% of Mice Reject Contralateral Tumor Challenge 30d Later

Elimination of CTLs Abrogates CpG Effect

Protective Memory: 100% of Mice Reject Contralateral Tumor Challenge 30d Later

CpG Treatment: MHC and Killer T Cells ↑ In Tumor

CpG Induces Tumor Antigen Presentation (MHC I and II)

And CD8 T Cell Infiltration

PF-3512676 (formerly CPG 7909) Can Treat Cancer As a Monotherapy

• In mice, PF-3512676 can cause T cell-dependent immune rejection of established SC or metastatic tumors

• In humans, PF-3512676 monotherapy has been associated with objective responses (RECIST) in:
 – Metastatic melanoma
 – Cutaneous T cell lymphoma
 – Non-Hodgkin’s lymphoma
 – Renal cell carcinoma
 – Basal cell carcinoma
PF-3512676 As Tumor Vaccine Adjuvant Enhances Killer T cell Response In Melanoma Patients

Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909

Daniel E. Speiser,1 Danielle Léandri,1,2 Nathalie Rufer,3 Verena Rubio-Godoy, Donata Rimoldi,1 Ferdy Lejeune,1 Arthur M. Krieg,4 Jean-Charles Cerottini,1,5 and Pedro Romero1

1Division of Clinical Oncology, Ludwig Institute for Cancer Research, and Multidisciplinary Oncology Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. 2Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland. 3Cepxy Pharmaceutical Group, Wellesley, Massachusetts, USA. 4Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland.

Figure 1

Rapid in vivo responses of Melan-A–specific T cells to vaccination (vacc) with low doses of CpG 7909. Melan-A peptides, and IFA. PBMCs were collected before, as well as 7–10 days after, vaccinations 2 and 4, and they were analyzed ex vivo by flow cytometry. (A) Dot plots of PBMCs of patient LAU 627, with percentage of Melan-A–specific cells among CD8+ T cells. (B) After 2 and 4 vaccinations, 6/8 and 8/8 patients, respectively, had significantly increased percentages (i.e., greater than 2-fold) of Melan-A–specific T cells. (C) A control group of 8 patients was similarly treated with Melan-A peptide and IFA but without CpG 7909. After 2 vaccinations, none of the patients had more than 2-fold increased percentages. After 4 vaccinations, 4/8 patients had more than 2-fold increased frequencies, but percentages of Melan-A–specific T cells remained significantly (P < 0.01) lower as compared to those of CpG-vaccinated patients. (D) Fold increase of Melan-A–specific T cells before or after 4 vaccinations in patients vaccinated with or without CpG. Horizontal lines indicate mean values.

Speiser et al., J Clin Invest, 2005

~10X Increase in Tumor-Specific CD8 Killer T Cells in Melanoma Patients
How Can We Get Stronger T cell Responses Against The Tumor?

• Conventional tumor vaccines don’t contain all tumor Ag
• Dendritic cell vaccines are cumbersome & impractical
• Can we make the tumor into a vaccine?
 – Activate DC through TLR9, tricking the immune system into thinking the tumor is an infection?
• The tumor mimics healthy tissue, defends itself against immune rejection (IL-10, VEGF, TGF-b, regulatory T cells, IDO)
• Intact tumor fragments are much more malignant than disrupted, isolated tumor cells (2-3 logs)
• Theory – immune therapy should work better if the tumor is disrupted
PF-3512676 is synergistic with local radiotherapy.

*3/7 cured
Milas, et al., Cancer Research, 2004
What If Disrupt Tumor with Surgery?

1. Inject 10^3 rhabdomyosarcoma cells IM
2. Resect tumor & DLN d 14
3. Rx: 100µg IP CpG d14, 17, 21, wkly X 4
4. CpG alone has only modest activity against large tumors in mice

Weigel et al, Clin Cancer Res. 2003

Days Post Injection

Proportion Surviving

Surgery + CpG
Surgery
No Surgery
Can TLR9 Stimulation by PF-3512676 Enhance Chemotherapy?

• Theory
 – Chemotherapy:
 • Disrupts tumor stroma
 • “Make space” for T cell response to TAA
 • Suppress regulatory T cells
 – CpG activates pDC in vivo
 – pDC induce T cell response that rejects tumor
• Demonstrated in vaccine model: chemo *increases* Ag-specific T cell response
Metastatic Cancer Models

- **Lewis lung carcinoma**
 - Cells injected IV (B6 mice)
 - Metastasis to lungs

- **Renca renal cell carcinoma**
 - Cells injected beneath kidney capsule on one side (BALB/c)
 - Metastasis to lungs, other kidney and heart

- **Treatment (both models)**
 - Starts day 7
 - PBS or Paclitaxel (36 mg/kg) ± PF 3512676 (SC, 100µg)
Lewis Lung Cancer Model: Increased Efficacy of PF-3512676 + Paclitaxel

- PF-3512676 > PBS (P=0.0006)
- Paclitaxel > PBS (P<0.0001)
- PF-3512676 + Paclitaxel > PF-3512676 or Paclitaxel alone (P<0.0001)
Renca Renal Cancer Model: Increased Efficacy of PF-3512676 + Paclitaxel Requires T Cells

Percent Survival

BALB/c

Days Post Tumor Induction

PBS

PF-3512676

PF-3512676 + Paclitaxel

Paclitaxel

BALB/c Nude

Percent Survival

0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80
Does PF-3512676 + Paclitaxel Induce Tumor-specific CD4/8 T Cells?

Naïve Mice
- Inject irradiated renca cells in the hind foot pads
- Remove draining (popliteal) and distal (axillary) LN
- LN cells cultured w/10 U/ml IL-2 for 4 d
- IFN-γ secretion by LN cells assayed by FACS

Mice Surviving Renca
Increased IFN-γ Secreting CD8+ and CD4+ Tumor-specific T Cells After PF-3512676 + Chemo

<table>
<thead>
<tr>
<th>Mice</th>
<th>Draining LN (Popliteal)</th>
<th>Distal LN (Axillary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>0/0.1</td>
<td>0.1/0</td>
</tr>
<tr>
<td>Renca Survivors</td>
<td>18.5/2.0</td>
<td>0.1/0.1</td>
</tr>
</tbody>
</table>

In Vivo DC Activation Through TLR9 Promotes Potent Anti-tumor T Cell Response, *Without A Vaccine*
Treg Depletion Enhances PF-3512676 Like Chemo

Percent Survival

Anti-CD25 Ab

Control (IgG1) Ab

No Ab

Days Post Tumor Induction

PBS

Paclitaxel (36mg/kg)

PF-3512676 (50µg x 4)

PF-3512676 + Paclitaxel
Summary: Murine Studies Show Synergy of PF-3512676 with Chemo and Other Cancer Therapies

- The TLR9 agonist PF-3512676 targets plasmacytoid DC, induces innate and adaptive anti-tumor immunity
- PF-3512676 has activity as monotherapy
- Activity of PF-3512676 monotherapy vs. large tumors is limited
- PF-3512676 shows synergy when used in combination with:
 - Anti-tumor antibody
 - Vaccines, other immunotherapies (e.g., anti-CTLA4)
 - Radiotherapy
 - Surgery
 - Chemo
- **Chemo inhibits Treg cells, promotes TLR9-induced anti-tumor T cell response, inducing regression of large murine tumors**
- Will PF-3512676 synergize with chemotherapy in humans?
Chemo naïve patients; **prognostic factors were balanced between the arms, except the combo arm had more advanced disease (86% stage IV vs 65% in chemo alone)**
Objective Response Rate
Primary Objective (RECIST Criteria)

Physician Evaluation

- PF-3512676 + Chemotherapy: 37% (CR 22%, PR 15%)
- Chemotherapy: 19% (CR 11%, PR 8%)

Independent Radiology Review

- PF-3512676 + Chemotherapy: 22% (PR 11%)
- Chemotherapy: 11% (PR 11%)

*p = 0.048
CR = Complete Response; PR = Partial Response*
Immune Effects of Stimulating TLR9

Later Induction of Adaptive Immune Response

- B Cell
- Plasmacytoid Dendritic Cell
- NK Cell, monocyte, PMN
- Antigen-specific T Cells

TLR9
PF-3512676
79% Improvement in Median Overall Survival (2° Objective)

Survival (Months)

Percent Survival

Chemotherapy + PF-3512676 n=74; Censored = 16
Chemotherapy Alone n=37; Censored = 8

1 Yr Survival Improved from 33% In Chemo Alone to 50% in Combo
Conclusions

- PF-3512676 may be useful in human cancer therapy as:
 - Vaccine adjuvant
 - Therapeutic (combined with chemo, XRT, MAb, surgery, immunotherapy)
 - Phase III trials underway in 1st line advanced NSCLC combos with standard chemo
 - Phase II trials underway in combos with erlotinib, pemetrexed, bevacizumab
- The safety profile of PF-3512676 appears generally good so far
 - Chemotherapy-related toxicity does not appear to be increased by addition of PF-3512676
 - Most common AEs are injxn site rxn, flu-like symptoms
 - >1000 humans exposed to PF-3512676 in Coley and partner trials
 - MTD not reached
 - Longest duration of CpG therapy >3 yr