Diagnosis and Prognosis in Acute Myeloid Leukemia
— The Art of Distinction —

“The discovery of acquired mutations … in AML has not only changed the role of the microscope in diagnosing leukemia but also influenced the management … and how we think about their causes”

Bob Löwenberg NEJM 2008
Introduction

Gene mutations play an important role in the pathogenesis of MDS.

Can we learn from examples in AML? In AML, mutations are practice changing

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Prognosis</th>
<th>Treatment</th>
<th>Transplant</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPM1</td>
<td>favorable</td>
<td>ATRA? (Schlenk et al NEJM 2008)</td>
<td>no</td>
</tr>
<tr>
<td>FLT3-ITD</td>
<td>unfavorable</td>
<td>FLT3 inhibitors? (eg. Midostaurin)</td>
<td>yes</td>
</tr>
</tbody>
</table>

Cytogenetic changes in MDS

-20 q-
-7/7q-
complex
Del (5q)

ASXL1
RUNX1
TET2
EZH2
TP53
e.tc…

normal
Targets of mutations in MDS
- Results of research at the beginning of 2011 -

Epigenetic modification
- TET2 (20%)
- ASXL1 (15%)
- EZH2 (6%)
- DNMT3A (6%)
- IDH1/IDH2 (3%)

Differentiation
- RUNX1 (9%)

Tumor suppressor
- p53 (8%)

Bejar et al JCO/NEJM 2011

Targets of mutations in MDS
- Results of research at the end of 2011 -

Novel Mutations identified in patients with RARS

Mutations in RNA splicing factor 3B, subunit 1 (SF3B1)
Identified in 65% (53/82) of patients with RARS

Papaemmanuil et al NEJM 2011
Targets of mutations in MDS
- Results of research at the end of 2011 -

Incidence in MDS
- **SF3B1** 6.5%
 (75.3% in RARS/RCMD-RS)
- **SRSF2** 11.6%
- **U2AF1** 11.6%
- **ZRSR2** 7.7%
 etc..

Novel mutations in the splicing machinery

Yoshida et al Nature 2011

Mutations of multiple components of the splicing machinery

Splicing Mutations
- Majority are heterozygous point mutations
- Some genes have mutational hotspots

Yoshida et al Nature 2011
Frequencies of spliceosome pathway mutations among 582 cases with various myeloid neoplasms

Mutations in splicing genes:
- rare in de novo AML
- frequent in MDS
- SF3B1 mutations most frequent in RARS/RCMD-RS
- SRSF2 mutations very frequent in CMML

Markers in MDS

We need to ask ourselves whether the markers are:

- Diagnostic
- Prognostic
- Predictive
- Targetable
Diagnostic?

To this day, no single known mutation is 100% specific for MDS or a subgroup of MDS.

However, in conjunction with morphology, molecular markers can help to make the diagnosis (mutations, cytogenetic changes).

Several mutations are more suggestive of certain MDS subtypes
- SF3B1 and RARS/RCMD-RS
- SRSF2 for CMML

Prognostic impact?

Splicing genes:
- U2AF1 (Gaubert et al Nat Genetics 2011)
- SRSF2 (Thol et al Blood 2012)

Others:
- ASXL1 (Thol et al JCO 2011)
- EZH2 (Ernst et al Nat Genetics 2010, Nikoloski et al Nat Genetics 2010)
- DNMT3A (Walter et al Leukemia 2011, Thol et al Haematologica 2011)

Prognostic impact sometimes controversial or unknown
Prognostic effect in MDS - SF3B1

- SF3B1 mutated
- SF3B1 WT

533 MDS patients

Overall Survival

Leukemia-free survival

P=0.009

P=0.032

Malcovati et al Blood 2011

Event-free survival

Prognostic effect in MDS with ring sideroblast - SF3B1

- SF3B1 mutated
- SF3B1 WT

48 MDS-RARS patients

P=0.06

Patnaik et al Blood 2011

43 MDS-RCMD-RS patients
Prognostic effects in MDS - U2AF1

150 MDS patients

Prognostic effects in MDS - SRSF2

154 MDS patients

Graubert et al Nat Genet. 2011

Thol et al. Blood 2012
Prognostic impact of TET2 – initial study

Overall Survival

- 88 MDS patients
- TET2 mutated
- TET2 WT

Leukemia-free survival

Event-free survival

Kosmider et al Blood 2009

Prognostic impact of TET2 - subsequent studies

- 320 MDS patients
- Allelic burden?
- Next generation sequencing:
 - OS between patients with a high (> 25% RMA) or low (≤ 25%) level mutation was not different (p=0.45)

Smith et al Blood 2010

- Similar results by Bejar et al NEJM 2011
Prognostic effect - ASXL1

154 MDS patients

Multivariate analysis:

- Overall survival
 - p=0.04

- Time to AML
 - p=0.024

Thol et al. JCO 2011

Prognostic effects in MDS/MPN - EZH2

Ernst et al Nat Genet. 2010
Prognostic effects in MDS- **EZH2**

119 MDS patients

Nikoloski et al Nat Genet. 2010

Prognostic effects in MDS- **DNMT3A**

8% out of 150 MDS (incl. RAEB-T) patients mutated

Walter et al Leukemia 2011

3% out of 193 MDS patients mutated

DNMT3A mutations associated with AML transformation (P=0.043)

Thol et al Haematologica 2011
Summary prognostic impact of common mutations in MDS

<table>
<thead>
<tr>
<th>Gene</th>
<th>Frequency in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>TET2</td>
<td>20</td>
</tr>
<tr>
<td>ASXL1</td>
<td>10</td>
</tr>
<tr>
<td>SRSF2</td>
<td>10</td>
</tr>
<tr>
<td>U2AF1</td>
<td>10</td>
</tr>
<tr>
<td>RUNX1</td>
<td>10</td>
</tr>
<tr>
<td>TP53</td>
<td>10</td>
</tr>
<tr>
<td>SF3B1</td>
<td>10</td>
</tr>
<tr>
<td>EZH2</td>
<td>5</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>5</td>
</tr>
<tr>
<td>RAS</td>
<td>5</td>
</tr>
<tr>
<td>ETV6</td>
<td>5</td>
</tr>
</tbody>
</table>

Predictive and targetable?

Multiple cooperating mutations in each patient

- Which are more relevant?
- Does the allelic burden matter?

Thol et al. Blood 2012
Treatment algorithms

MDS

IPSS

low/int-1

int-2/high

Del(5q) Epo < 500 Epo > 500

< 60 y > 60 y

donor no donor

Lenalidomide Epo +/- G-CSF trials

Chelation therapy

ATG/Alemtuzumab?

Azacitidine

Allogeneic stem cell transplantation

and trials

Lenalidomide and del(5q)

- Del(5q) predicts response to Lenalidomide

List et al NEJM 2006

- In patients with del(5q), mutated TP53 predicts lower response to lenalidomide

Jädersten et al JCO 2011
Lenalidomide and MDS without del(5q)

Study cohort
- 42 patients
- 31 MDS (13 RARS)
- 7 MDS/MPN
- 2 PFM
- 2sAML

--> small heterogenous patient group

- Cytogenetic predictors of response:
 - Normal karyotyp, Trisomy 8

- Molecular markers studied in 21 patients
 - *(TET2, CBL, EZH2, ASXL1, TP53, RAS, IDH1/2, DNMT3A, UTX)*:
 - no predictors for response

Sugimoto et al J Hematol Oncol. 2012

Hypomethylating agents and epigenetic regulators

Genes involved in epigenetic modification are frequently mutated in MDS: *TET2, EZH2, ASXL1, IDH, DNMT3A*

→ Do demethylating agents help here?

Azacitidine
Decitabine

TET2 mutations and hypomethylating agents

- Response to Azacitidine improved in mutated TET2 but no difference in OS

 Itzykson et al, Leukemia 2011

- Similar results in a cohort of 93 MDS patients

 Traina et al, Blood (ASH Annual Meeting Abstracts 2011); 118: 461.

DNMT3A mutations and hypomethylating agents

In AML:

- Similar results in a cohort of 93 MDS patients

 Traina et al, Blood (ASH Annual Meeting Abstracts 2011); 118: 461.
Other mutations and hypomethylating agents

- Impact of mutations affecting ASXL1, EZH2, IDH on response to hypomethylating agents unknown.

- To date, data is very limited about predictive value of molecular markers for response to therapy (e.g., splicing genes)

--> no data on prospective trials

Splicing genes and CLL

In CLL, SF3B1 mutations are associated with fludarabine-refractoriness

Rossi et al Blood 2011
Who and when to transplant?

Answers:
- Only curative approach
- Mainly offered to younger patients (< 60 years)
- Disease-free survival: 30-50% Chen et al Blood 2007

Questions:
- Who benefits from transplantation?
- When is the best timing for transplantation?
- Are there any molecular markers predicting patients’ outcome?

Who and when to transplant?

Many patients are undergoing allogeneic transplant after transformation to AML.

After AML transformation
- outcome less favorable,
- more intense induction therapy needed \rightarrow more treatment related morbidity

Molecular markers might identify patients and time points for transplant…
Molecular markers for outcome after allogeneic hematopoietic stem cell transplantation in MDS

Hannover study

Aim: To investigate the prognostic impact of ASXL1 mutations in a cohort of patients with high risk MDS or secondary AML following MDS (sAML) undergoing allogeneic HSCT.

Methods: 105 patients evaluated for mutations in ASXL1 by direct sequencing.

Overall survival according to characteristics of HSCT patients.

Könecke*, Thol* Blood (ASH Annual Meeting Abstracts 2011);118: 1709

Multivariate analysis: Overall survival for ASXL1 p=0.008
Treatment algorithms

MDS

IPSS

low/int-1

int-2/high

Molecular markers?

Del(5q) Epo <500 Epo > 500

<60y > 60 y

Donor no donor

Lenalidomide Epo +/- G-CSF

Chelation therapy

Allogeneic stem cell transplantation

ASXL1… ?

TP53

TET2

DNMT3A

Should molecular genetics guide individualized therapy in MDS?

I am leaving you with questions and not with answers...

But we do have the tools to answer our questions:

- Clinical trials
- Molecular diagnostic including
Next Generation Sequencing

I am leaving you with questions and not with answers…
Summary

Diagnosis and Prognosis in Myelodysplastic syndrome — The Art of Distinction —

We need to ask ourselves whether the markers are:

- Diagnostic (helpful e.g. SF3B1 and RARS)
- Prognostic (yes)
- Predictive (yes, but prospective trials needed)
- Targetable (work to be done)

Is this future of MDS?

Novel/others: Treatment F

TET2 → Treatment A

RUNX1 → Treatment B

EZH2 → Treatment E

ASXL1 → Treatment C

SF3B1 → Treatment D

The answer can come from trials
Acknowledgement

Department of Hematology, Hemostasis, Oncology und Stem Cell Transplantation
Hannover Medical School
Arnold Ganser
Michael Heuser
Jürgen Krauter
Frederik Dannm
Katharina Wagner
Martin Wichmann
Kerstin Görlchi
Anuhar Chaturvedi
Amit Sharma
Haiyang Yun
Inna Friesen
Ann-Kathrin Sonntag
Britta Kökking
Carola Schlarmann
Sofia Kade
Patrick Löffeld
Claudia Winschel
Andrea Lüdecking

Institute of Cell and Molecular Pathology
Hannover Medical School
Gudrun Göhring
Brigitte Schlegelberger

Collaborators
Wolf-Karsten Hofmann
Gesine Bug
Oliver Ottmann

Mentors of TRTH
Eva Hellström-Lindberg
Hal Broxmeyer
Frank Rosenbauer
Radek Skoda

AND all patients

TRANSLATIONAL RESEARCH TRAINING IN HEMATOLOGY